注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

zorksylar

Nothing is impossible , if distributed.

 
 
 

日志

 
 

zz:Joseph's problem 的数学解法  

2011-08-12 20:45:08|  分类: ACM_数论 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起


没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而

不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。

为了讨论方便,先把问题稍微改变一下,并不影响原意:

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出剩下的人继续从0开始

报数。求胜利者的编号。

我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环

(以编号为k=m%n的人开始):

k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2

并且从k开始报0。

现在我们把他们的编号做一下转换:

k --> 0

k+1 --> 1

k+2 --> 2

...

...

k-2 --> n-2

k-1 --> n-1

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是

最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回

去的公式很简单,相信大家都可以推出来:x'=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解

呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写

递推公式:

f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式

f[1]=0;

f[i]=(f[i-1]+m)%i; (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生

活中编号总是从1开始,我们输出f[n]+1

由于是逐级递推,不需要保存每个f[i],程序也是异常简单:

#include <stdio.h>

main()

{

int n, m, i, s=0;

printf ("N M = "); scanf("%d%d", &n, &m);

for (i=2; i<=n; i++) s=(s+m)%i;

printf ("The winner is %d\n", s+1);

}

这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万、

一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往

往会成倍地提高算法执行效率。



题目: POJ3517

  评论这张
 
阅读(117)| 评论(6)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018